Abstract
Recently, zeolites have been proposed as media for hydrogen by means of molecular adsorption. The interaction of a dihydrogen molecule on alkali metal ions in high-silica zeolites has been theoretically studied in cluster and periodic models at the B3-LYP level of theory. The cluster models have been obtained by embedding Li+, Na+, and K+ in aluminosilicate rings of different sizes (Sin-1AlOnH 2n, 4 ≤ n ≤ 6). The structure of Li, Na, and K-exchanged chabazite with Si/Al =11:1 has been adopted as the periodic model. In both cases, the hydrogen molecule interacts side-on with the cations, forming T-shaped complexes. The results have been compared with similar data obtained for bare cations and previous experimental studies. Furthermore, the necessity of employing correlated methods for a proper description of the interaction has been verified at the MP2 level.
Original language | English (US) |
---|---|
Pages (from-to) | 2505-2513 |
Number of pages | 9 |
Journal | Journal of Physical Chemistry C |
Volume | 111 |
Issue number | 6 |
DOIs | |
State | Published - 2007 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- General Energy
- Physical and Theoretical Chemistry
- Surfaces, Coatings and Films