Identification of blood-feeding sources in Panstrongylus, Psammolestes, Rhodnius and Triatoma using amplicon-based next-generation sequencing

Luisa M. Arias-Giraldo, Marina Muñoz, Carolina Hernández, Giovanny Herrera, Natalia Velásquez-Ortiz, Omar Cantillo-Barraza, Plutarco Urbano, Andrés Cuervo, Juan David Ramírez

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

BACKGROUND: Triatomines are hematophagous insects that play an important role as vectors of Trypanosoma cruzi, the causative agent of Chagas disease. These insects have adapted to multiple blood-feeding sources that can affect relevant aspects of their life-cycle and interactions, thereby influencing parasitic transmission dynamics. We conducted a characterization of the feeding sources of individuals from the primary circulating triatomine genera in Colombia using amplicon-based next-generation sequencing (NGS). METHODS: We used 42 triatomines collected in different departments of Colombia. DNA was extracted from the gut. The presence of T. cruzi was identified using real-time PCR, and discrete typing units (DTUs) were determined by conventional PCR. For blood-feeding source identification, PCR products of the vertebrate 12S rRNA gene were obtained and sequenced by next-generation sequencing (NGS). Blood-meal sources were inferred using blastn against a curated reference dataset containing the 12S rRNA sequences belonging to vertebrates with a distribution in South America that represent a potential feeding source for triatomine bugs. Mean and median comparison tests were performed to evaluate differences in triatomine blood-feeding sources, infection state, and geographical regions. Lastly, the inverse Simpson's diversity index was calculated. RESULTS: The overall frequency of T. cruzi infection was 83.3%. TcI was found as the most predominant DTU (65.7%). A total of 67 feeding sources were detected from the analyses of approximately 7 million reads. The predominant feeding source found was Homo sapiens (76.8%), followed by birds (10.5%), artiodactyls (4.4%), and non-human primates (3.9%). There were differences among numerous feeding sources of triatomines of different species. The diversity of feeding sources also differed depending on the presence of T. cruzi. CONCLUSIONS: To the best of our knowledge, this is the first study to employ amplicon-based NGS of the 12S rRNA gene to depict blood-feeding sources of multiple triatomine species collected in different regions of Colombia. Our findings report a striking read diversity that has not been reported previously. This is a powerful approach to unravel transmission dynamics at microgeographical levels.

Translated title of the contributionIdentificación de fuentes de alimentación de sangre en Panstrongylus, Psammolestes, Rhodnius y Triatoma mediante la secuenciación de próxima generación basada en amplicones
Original languageEnglish (US)
Pages (from-to)434
Number of pages1
JournalParasites & vectors
Volume13
Issue number1
DOIs
StatePublished - Aug 31 2020

All Science Journal Classification (ASJC) codes

  • Parasitology
  • Infectious Diseases

Fingerprint

Dive into the research topics of 'Identification of blood-feeding sources in Panstrongylus, Psammolestes, Rhodnius and Triatoma using amplicon-based next-generation sequencing'. Together they form a unique fingerprint.

Cite this