GLP-1 Analogues in the Neurobiology of Addiction: Translational Insights and Therapeutic Perspectives

Juan David Marquez-Meneses, Santiago Arturo Olaya-Bonilla, Samuel Barrera-Carreño, Lucía Catalina Tibaduiza-Arévalo, Sara Forero-Cárdenas, Liliana Carrillo-Vaca, Luis Carlos Rojas-Rodríguez, Carlos Alberto Calderon-Ospina, Jesús Rodríguez-Quintana

Research output: Contribution to journalReview articlepeer-review

Abstract

Glucagon-like peptide-1 receptor agonists, originally developed for the treatment of metabolic disorders, have recently emerged as promising candidates for the management of substance use disorders. This review synthesizes preclinical, clinical, and translational evidence on the effects of glucagon-like peptide-1 receptor agonists across addiction models involving alcohol, nicotine, psychostimulants, and opioids. In animal studies, glucagon-like peptide-1 receptor agonists consistently reduce drug intake, attenuate dopamine release in reward circuits, and decrease relapse-like behavior. Clinical and observational studies provide preliminary support for these findings, particularly among individuals with comorbid obesity or insulin resistance. However, several translational barriers remain, including limited blood–brain barrier penetration, species differences in pharmacokinetics, and variability in treatment response due to genetic and metabolic factors. Ethical considerations and methodological heterogeneity further complicate clinical translation. Future directions include the development of central nervous system penetrant analogues, personalized medicine approaches incorporating pharmacogenomics, and rigorously designed trials in diverse populations. Glucagon-like peptide-1 receptor agonists may offer a novel therapeutic strategy that addresses both metabolic and neuropsychiatric dimensions of addiction, warranting further investigation to define their role in the evolving landscape of substance use disorder treatment.

Original languageEnglish (US)
Article number5338
JournalInternational Journal of Molecular Sciences
Volume26
Issue number11
DOIs
StatePublished - Jun 2025

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Cite this