Abstract
Original language | English (US) |
---|---|
Pages (from-to) | 752-762 |
Number of pages | 11 |
Journal | Evolution |
Volume | 66 |
Issue number | 3 |
DOIs | |
State | Published - 2011 |
Fingerprint
Dive into the research topics of 'Fitting models of continuous trait evolution to incompletely sampled comparative data using approximate bayesian computation'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Evolution, Vol. 66, No. 3, 2011, p. 752-762.
Research output: Contribution to journal › Research Article › peer-review
TY - JOUR
T1 - Fitting models of continuous trait evolution to incompletely sampled comparative data using approximate bayesian computation
AU - Slater, G.J.
AU - Harmon, L.J.
AU - Wegmann, D.
AU - Joyce, P.
AU - Revell, L.J.
AU - Alfaro, M.E.
N1 - Cited By :35 Export Date: 17 April 2018 CODEN: EVOLA Correspondence Address: Slater, G.J.; Department of Ecology and Evolutionary Biology, University of California, 610 Charles E. Young Drive East, Los Angeles, CA 90095-1606, United States; email: [email protected] References: Ackerly, D.D., Nyffeler, R., Evolutionary diversification of continuous traits: phylogenetic tests and application to seed size in the California flora (2004) Evol. Ecol., 18, pp. 249-272; Albert, J.S., Johnson, D.M., Knouft, J.H., Fossils provide better estimates of ancestral body size than do extant taxa in fishes (2009) Acta Zool., 90, pp. 357-384; Alfaro, M.E., Santini, F., Brock, C., Alamillo, H., Dornburg, A., Rabosky, D.L., Carnevale, G., Harmon, L.J., Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates (2009) Proc. Natl. Acad. Sci. USA, 106, pp. 13410-13414; Beaumont, M.A., Zhang, W.Y., Balding, D.J., Approximate Bayesian computation in population genetics (2002) Genetics, 162, pp. 2025-2035; Bokma, F., Time, species and separating their effects on trait variance in clades (2010) Syst. Biol., 59, pp. 602-607; Butler, M.A., King, A.A., Phylogenetic comparative analysis: a modeling approach for adaptive evolution (2004) Am. Nat., 164, pp. 683-695; Collar, D.C., Near, T.J., Wainwright, P.C., Comparative analysis of morphological diversity: does disparity accumulate at the same rate in two lineages of centrarchid fishes? (2005) Evolution, 59, pp. 1783-1794; Cook, S.R., Gelman, A., Rubin, D.B., Validation of software for Bayesian models using posterior quantiles (2006) J. Comput. Graph. Stat., 15, pp. 675-692; Csillery, K., Blum, M.G.B., Gaggiotti, O.E., Francois, O., Approximate Bayesian computation (ABC) in practice (2010) Trends Ecol. Evol., 25, pp. 410-418; Deméré, T.A., Berta, A., Adam, P.J., Pinnipedimorph evolutionary biogeography (2003) B Am. Mus. Nat. Hist., 13, pp. 32-76; Eastman, J.M., Alfaro, M.E., Joyce, P., Hipp, A.L., Harmon, L.J., A novel comparative method for identifying shifts in the rate of character evolution on trees Evolution, , in press; Eizirik, E., Murphy, W.J., Koepfli, K.P., Johnson, W.E., Dragoo, J.W., Wayne, R.K., O'Brien, S.J., Pattern and timing of diversification of the mammalian order Carnivora inferred from multiple nuclear gene sequences (2010) Mol. Phylogenet. Evol., 56, pp. 49-63; Felsenstein, J., Phylogenies and the comparative method (1985) Am. Nat., 125, pp. 1-15; Finarelli, J.A., Flynn, J.J., Ancestral state reconstruction of body size in the Caniformia (Carnivora, Mammalia): the effects of incorporating data from the fossil record (2006) Syst. Biol., 55, pp. 301-313; FitzJohn, R.G., Quantitative traits and diversification (2010) Syst. Biol., 59, pp. 619-633; FitzJohn, R.G., Maddison, W.P., Otto, S.P., Estimating trait-dependent speciation and extinction rates from incompletely resolved phylogenies (2009) Syst. Biol., 58, pp. 595-611; Garland, T., Dickerman, A.W., Janis, C.M., Jones, J.A., Phylogenetic analysis of covariance by computer simulation (1993) Syst. Biol., 42, pp. 265-292; Gelman, A., Rubin, D.B., Inference from iterative simulation using multiple sequences (1992) Stat. Sci., 7, pp. 457-472; Gittleman, J.L., Purvis, A., Body size and species-richness in carnivores and primates (1998) Proc. R. Soc. Lond. B, 265, pp. 113-119; Hansen, T.F., Stabilizing selection and the comparative analysis of adaptation (1997) Evolution, 51, pp. 1341-1351; Hansen, T.F., Martins, E.P., Translating between microevolutionary process and macroevolutionary patterns: the correlation structure of interspecific data (1996) Evolution, 50, pp. 1404-1417; Harmon, L.J., Losos, J.B., Davies, T.J., Gillespie, R.G., Gittleman, J.L., Jennings, W.B., Kozak, K.H., Near, T.J., Early bursts of body size and shape evolution are rare in comparative data (2010) Evolution, 64, pp. 2385-2396; Harmon, L.J., Schulte, J.A., Larson, A., Losos, J.B., Tempo and mode of evolutionary radiation in iguanian lizards (2003) Science, 301, pp. 961-964; Hunt, G., Fitting and comparing models of phyletic evolution: random walks and beyond. (2006) Paleobiology, 32, pp. 578-601; Jones, K.E., Bielby, J., Cardillo, M., Fritz, S.A., O'Dell, J., Orme, C.D.L., Safi, K., Carbone, C., PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals (2009) Ecology, 90, p. 2648; Joyce, P., Marjoram, P., Approximately sufficient statistics and Bayesian computation (2008) Stat. Appl. Genet. Mol., 7. , article 26; Leuenberger, C., Wegmann, D., Bayesian computation and model selection without likelihoods (2010) Genetics, 184, pp. 243-252; Maddison, W.P., Midford, P.E., Otto, S.P., Estimating a binary character's effect on speciation and extinction (2007) Syst. Biol., 56, pp. 701-710; Marjoram, P., Molitor, J., Plagnol, V., Tavare, S., Markov chain Monte Carlo without likelihoods (2003) Proc. Natl. Acad. Sci. USA, 100, pp. 15324-15328; McPeek, M.A., Testing hypotheses about evolutionary change on single branches of a phylogeny using evolutionary contrasts (1995) Am. Nat., 145, pp. 686-703; Nee, S., May, R.M., Harvey, P.H., The reconstructed evolutionary process (1994) Phil. Trans. R. Soc. Lond. B., 344, pp. 305-311; Nowak, R.M., (1999) Walker's mammals of the world, , The Johns Hopkins Univ. Press, Baltimore; O'Meara, B.C., Ane, C., Sanderson, M.J., Wainwright, P.C., Testing for different rates of continuous trait evolution using likelihood (2006) Evolution, 60, pp. 922-933; Pie, M.R., Weitz, J.S., A null model of morphospace occupation (2005) Am. Nat., 166, pp. E1-E13; Polly, P.D., Paleontology and the comparative method: ancestral node reconstructions versus observed node values (2001) Am. Nat., 157, pp. 596-609; Pybus, O.G., Harvey, P.H., Testing macro-evolutionary models using incomplete molecular phylogenies (2000) Proc. R. Soc. Lond. B, 267, pp. 2267-2272; Rabosky, D.L., Extinction rates should not be estimated from molecular phylogenies (2010) Evolution, 64, pp. 1816-1824; Rabosky, D.L., Lovette, I.J., Density-dependent diversification in North American wood warblers (2008) Proc. R. Soc. Lond. B, 275, pp. 2363-2371; Rabosky, D.L., Lovette, I.J., Explosive evolutionary radiations: decreasing speciation or increasing extinction through time? (2008) Evolution, 62, pp. 1866-1875; Rabosky, D.L., Donnellan, S.C., Talaba, A.L., Lovette, I.J., Exceptional among-lineage variation in diversification rates during the radiation of Australia's most diverse vertebrate clade (2007) Proc. R. Soc. Lond. B, 274, pp. 2915-2923; Raup, D.M., Gould, S.J., Schopf, T.J.M., Simberlof, D.S., Stochastic models of phylogeny and evolution of diversity (1973) J. Geol., 81, pp. 525-542; Revell, L.J., On the analysis of evolutionary change along single branches in a phylogeny (2008) Am. Nat., 172, pp. 140-147; Revell, L.J., Collar, D.C., Phylogenetic analysis of the evolutionary correlation using likelihood (2009) Evolution, 63, pp. 1090-1100; Revell, L.J., Harmon, L.J., Langerhans, R.B., Kolbe, J.J., A phylogenetic approach to determining the importance of constraint on phenotypic evolution in the neotropical lizardAnolis cristatellus (2007) Evol. Ecol. Res., 9, pp. 261-282; Revell, L.J., Mahler, D.L., Peres-Neto, P.R., Redelings, B.D., A new phylogenetic method for identifying exceptional phenotypic diversification Evolution, , in press; Ricklefs, R.E., Time, species, and the generation of trait variance in clades (2006) Syst. Biol., 55, pp. 151-159; Schluter, D., Price, T., Mooers, A.O., Ludwig, D., Likelihood of ancestor states in adaptive radiation (1997) Evolution, 51, pp. 1699-1711; Sidlauskas, B., Testing for unequal rates of morphological diversification in the absence of a detailed phylogeny: a case study from characiform fishes (2007) Evolution, 61, pp. 299-316; Simpson, G.G., (1953) The major features of evolution, , Columbia University Press, New York, USA; Stadler, T., Simulating trees on a fixed number of species Syst. Biol., , in press; Tavaré, S., Balding, D.J., Griffiths, R.C., Donnelly, P., Inferring coalescence times from DNA sequence data (1997) Genetics, 145, pp. 505-518; Thomas, G.H., Freckleton, R.P., Szekely, T., Comparative analyses of the influence of developmental mode on phenotypic diversification rates in shorebirds (2006) Proc. R. Soc. Lond. B, 273, pp. 1619-1624; Thomas, G.H., Meiri, S., Phillimore, A.B., Body size diversification inAnolis: novel environment and island effects (2009) Evolution, 63, pp. 2017-2030; Wegmann, D., Leuenberger, C., Excoffier, L., Efficient approximate Bayesian computation coupled with Markov chain Monte Carlo without likelihood (2009) Genetics, 182, pp. 1207-1218; Wegmann, D., Leuenberger, C., Neuenschwander, S., Excoffier, L., ABCtoolbox: a versatile toolkit for approximate Bayesian computations (2010) BMC Bioinform., 11, p. 116; Wozencraft, W.C., Order carnivora (2005) Mammal species of the world: a taxonomic and geographic reference, pp. 532-628. , in D. E. Wilson and D. M. Reeder, eds. The Johns Hopkins Univ. Press, Baltimore
PY - 2011
Y1 - 2011
N2 - In recent years, a suite of methods has been developed to fit multiple rate models to phylogenetic comparative data. However, most methods have limited utility at broad phylogenetic scales because they typically require complete sampling of both the tree and the associated phenotypic data. Here, we develop and implement a new, tree-based method calledMECCA(Modeling Evolution of Continuous Characters using ABC) that uses a hybrid likelihood/approximate Bayesian computation (ABC)-Markov-Chain Monte Carlo approach to simultaneously infer rates of diversification and trait evolution from incompletely sampled phylogenies and trait data. We demonstrate via simulation thatMECCAhas considerable power to choose among single versus multiple evolutionary rate models, and thus can be used to test hypotheses about changes in the rate of trait evolution across an incomplete tree of life. We finally applyMECCAto an empirical example of body size evolution in carnivores, and show that there is no evidence for an elevated rate of body size evolution in the pinnipeds relative to terrestrial carnivores. ABC approaches can provide a useful alternative set of tools for future macroevolutionary studies where likelihood-dependent approaches are lacking. © 2011 The Author(s). Evolution © 2011 The Society for the Study of Evolution.
AB - In recent years, a suite of methods has been developed to fit multiple rate models to phylogenetic comparative data. However, most methods have limited utility at broad phylogenetic scales because they typically require complete sampling of both the tree and the associated phenotypic data. Here, we develop and implement a new, tree-based method calledMECCA(Modeling Evolution of Continuous Characters using ABC) that uses a hybrid likelihood/approximate Bayesian computation (ABC)-Markov-Chain Monte Carlo approach to simultaneously infer rates of diversification and trait evolution from incompletely sampled phylogenies and trait data. We demonstrate via simulation thatMECCAhas considerable power to choose among single versus multiple evolutionary rate models, and thus can be used to test hypotheses about changes in the rate of trait evolution across an incomplete tree of life. We finally applyMECCAto an empirical example of body size evolution in carnivores, and show that there is no evidence for an elevated rate of body size evolution in the pinnipeds relative to terrestrial carnivores. ABC approaches can provide a useful alternative set of tools for future macroevolutionary studies where likelihood-dependent approaches are lacking. © 2011 The Author(s). Evolution © 2011 The Society for the Study of Evolution.
U2 - 10.1111/j.1558-5646.2011.01474.x
DO - 10.1111/j.1558-5646.2011.01474.x
M3 - Research Article
SN - 0014-3820
VL - 66
SP - 752
EP - 762
JO - Evolution
JF - Evolution
IS - 3
ER -