Evolutionary Novelty in a Butterfly Wing Pattern through Enhancer Shuffling

Richard W.R. Wallbank, Simon W. Baxter, Carolina Pardo-Diaz, Joseph J. Hanly, Simon H. Martin, James Mallet, Kanchon K. Dasmahapatra, Camilo Salazar, Mathieu Joron, Nicola Nadeau, W. Owen McMillan, Chris D. Jiggins

    Research output: Contribution to journalResearch Articlepeer-review

    116 Scopus citations

    Abstract

    An important goal in evolutionary biology is to understand the genetic changes underlying novel morphological structures. We investigated the origins of a complex wing pattern found among Amazonian Heliconius butterflies. Genome sequence data from 142 individuals across 17 species identified narrow regions associated with two distinct red colour pattern elements, dennis and ray. We hypothesise that these modules in non-coding sequence represent distinct cis-regulatory loci that control expression of the transcription factor optix, which in turn controls red pattern variation across Heliconius. Phylogenetic analysis of the two elements demonstrated that they have distinct evolutionary histories and that novel adaptive morphological variation was created by shuffling these cis-regulatory modules through recombination between divergent lineages. In addition, recombination of modules into different combinations within species further contributes to diversity. Analysis of the timing of diversification in these two regions supports the hypothesis of introgression moving regulatory modules between species, rather than shared ancestral variation. The dennis phenotype introgressed into Heliconius melpomene at about the same time that ray originated in this group, while ray introgressed back into H. elevatus much more recently. We show that shuffling of existing enhancer elements both within and between species provides a mechanism for rapid diversification and generation of novel morphological combinations during adaptive radiation.

    Original languageEnglish (US)
    Article numbere1002353
    JournalPLoS Biology
    Volume14
    Issue number1
    DOIs
    StatePublished - Jan 15 2016

    All Science Journal Classification (ASJC) codes

    • General Neuroscience
    • General Biochemistry, Genetics and Molecular Biology
    • General Immunology and Microbiology
    • General Agricultural and Biological Sciences

    Fingerprint

    Dive into the research topics of 'Evolutionary Novelty in a Butterfly Wing Pattern through Enhancer Shuffling'. Together they form a unique fingerprint.

    Cite this