Abstract
Original language | English (US) |
---|---|
Pages (from-to) | 2731-2745 |
Number of pages | 15 |
Journal | Evolution |
Volume | 64 |
Issue number | 9 |
DOIs | |
State | Published - Sep 2010 |
Fingerprint
Dive into the research topics of 'Ecological opportunity and the rate of morphological evolution in the diversification of greater Antillean anoles'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Evolution, Vol. 64, No. 9, 09.2010, p. 2731-2745.
Research output: Contribution to journal › Research Article › peer-review
TY - JOUR
T1 - Ecological opportunity and the rate of morphological evolution in the diversification of greater Antillean anoles
AU - Mahler, D.L.
AU - Revell, L.J.
AU - Glor, R.E.
AU - Losos, J.B.
N1 - Cited By :201 Export Date: 17 April 2018 CODEN: EVOLA Correspondence Address: Mahler, D.L.; Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, United States; email: [email protected] References: Akaike, H., A new look at the statistical model identification (1974) IEEE Trans. Automat. Control, 19, pp. 716-723; Alroy, J., Speciation and extinction in the fossil record of North American mammals (2009) Speciation and patterns of diversity, pp. 301-323. , Butlin R, Bridle J, Schluter D. Cambridge Univ. Press, Cambridge, UK; Alroy, J., Aberhan, M., Bottjer, D.J., Foote, M., Fürsich, F.T., Harries, P.J., Hendy, A.J.W., et al, Phanerozoic trends in the global diversity of marine invertebrates (2008) Science, 321, pp. 97-100; Baldwin, B.G., Sanderson, M.J., Age and rate of diversification of the Hawaiian silversword alliance (Compositae) (1998) Proc. Natl. Acad. Sci. USA, 95, pp. 9402-9406; Benton, M.J., The red queen and the court jester: species diversity and the role of biotic and abiotic factors through time (2009) Science, 323, pp. 728-732; Bollback, J.P., SIMMAP: stochastic character mapping of discrete traits on phylogenies (2006) BMC Bioinformatics, 7, p. 88; Burbrink, F.T., Pyron, R.A., How does ecological opportunity influence rates of speciation, extinction, and morphological diversification in New World ratsnakes (Tribe Lampropeltini)? (2010) Evolution, 64, pp. 934-943; Burnham, K.P., Anderson, D.R., (2002) Model selection and multimodal inference: a practical-theoretic approach, , 2nd ed, Springer-Verlag, New York; Buskirk, R.E., Zoogeographic patterns and tectonic history of Jamaica and the northern Caribbean (1985) J. Biogeogr, 12, pp. 445-461; Calder, W.A., (1984) Size, function, and life history, , Harvard Univ. Press, Cambridge, MA; Carlquist, S., (1974) Island biology, , Columbia Univ. Press, New York; Chiba, S., Ecological and morphological patterns in communities of land snails of the genus Mandarina from the Bonin Islands (2004) J. Evol. Biol., 17, pp. 131-143; Drummond, A.J., Rambaut, A., BEAST: Bayesian evolutionary analysis by sampling trees (2007) BMC Evol. Biol., 7, p. 214; Erwin, D.H., Lessons from the past: Biotic recoveries from mass extinctions (2001) Proc. Natl. Acad. Sci. USA, 98, pp. 5399-5403; Erwin, D.H., Disparity: morphological pattern and developmental context (2007) Palaeontology, 50, pp. 57-73; Erwin, D.H., Valentine, J.W., Sepkoski, J.J., A comparative study of diversification events: the early Paleozoic vs. the Mesozoic (1987) Evolution, 41, pp. 1177-1186; Felsenstein, J., Phylogenies and the comparative method (1985) Am. Nat., 125, pp. 1-15; Foote, M., Paleozoic record of morphological diversity in blastozoan echinoderms (1992) Proc. Natl. Acad. Sci. USA, 89, pp. 7325-7329; Foote, M., Morphological disparity in Ordovician-Devonian crinoids and the early saturation of morphological space (1994) Paleobiology, 20, pp. 320-344; Foote, M., Ecological controls on the evolutionary recovery of post-Paleozoic crinoids (1996) Science, 274, pp. 1492-1495; Foote, M., The evolution of morphological diversity (1997) Annu. Rev. Ecol. Syst., 28, pp. 129-152; Freckleton, R.P., Harvey, P.H., Detecting non-Brownian trait evolution in adaptive radiations (2006) PLoS Biol., 4, pp. e373; Friedman, M., Explosive morphological diversification of spiny-finned teleost fishes in the aftermath of the end-Cretaceous extinction (2010) Proc. R. Soc. Lond. B, 277, pp. 1675-1683; Fryer, G., Endemism, speciation, and adaptive radiation in great lakes (1996) Environ. Biol. Fish., 45, pp. 109-131; Gavrilets, S., Losos, J.B., Adaptive radiation: contrasting theory with data (2009) Science, 323, pp. 732-737; Gavrilets, S., Vose, A., Dynamic patterns of adaptive radiation (2005) Proc. Natl. Acad. Sci. USA, 102, pp. 18040-18045; Gillespie, R.G., Howarth, F.G., Roderick, G.K., Adaptive radiation (2001) Encyclopedia of biodiversity, 1, pp. 25-44. , Levin S A. Academic Press, New York; Glor, R.E., Kolbe, J.J., Powell, R., Larson, A., Losos, J.B., Phylogenetic analysis of ecological and morphological diversification in Hispaniolan trunk-ground anoles (Anolis cybotes group) (2003) Evolution, 57, pp. 2383-2397; Gould, S.J., (1989) Wonderful life: the Burgess Shale and the nature of history, , Norton, New York; Grafen, A., The phylogenetic regression (1989) Phil. Trans. R. Soc. Lond. B, 326, pp. 119-157; (1998) Evolution on islands, , Grant P R. ed, Oxford Univ. Press, Oxford, UK; Harmon, L.J., Schulte, J.A., Larson, A., Losos, J.B., Tempo and mode of evolutionary radiation in iguanian lizards (2003) Science, 301, pp. 961-964; Harmon, L.J., Melville, J., Larson, A., Losos, J.B., The role of geography and ecological opportunity in the diversification of day geckos (Phelsuma) (2008) Syst. Biol., 57, pp. 562-573; Harvey, P.H., May, R.M., Nee, S., Phylogenies without fossils (1994) Evolution, 48, pp. 523-529; Hedges, S.B., Paleogeography of the Antilles and the origin of West Indian terrestrial vertebrates (2006) Ann. Mo. Bot. Gard., 93, pp. 231-244; Herrel, A., McBrayer, L.D., Larson, P.M., Functional basis for sexual differences in bite force in the lizard Anolis carolinensis (2007) Biol. J. Linn. Soc., 91, pp. 111-119; Hurvich, C.M., Tsai, C.-L., Regression and time series model selection in small samples (1989) Biometrika, 76, pp. 297-307; Hutchinson, G.E., Homage to Santa Rosalia, or why are there so many kinds of animals? (1959) Am. Nat., 93, pp. 145-159; Irschick, D.J., Losos, J.B., A comparative analysis of the ecological significance of maximal locomotor performance in Caribbean Anolis lizards (1998) Evolution, 52, pp. 219-226; Irschick, D.J., Losos, J.B., Do lizards avoid habitats in which performance is submaximal? The relationship between sprinting capabilities and structural habitat use in Caribbean anoles (1999) Am. Nat., 154, pp. 293-305; Ito, H.C., Dieckmann, U., A new mechanism for recurrent adaptive radiations (2007) Am. Nat., 170, pp. E96-E111; Kozak, K.H., Weisrock, D.W., Larson, A., Rapid lineage accumulation in a non-adaptive radiation: phylogenetic analysis of diversification rates in eastern North American woodland salamanders (Plethodontidae: Plethodon) (2006) Proc. R. Soc. Lond. B, 273, pp. 539-546; Krzanowski, W.J., Between-group comparisons of principal components (1979) J. Am. Stat. Assoc., 74, pp. 703-707; LaBarbera, M., Analyzing body size as a factor in ecology and evolution (1989) Annu. Rev. Ecol. Syst., 20, pp. 97-117; Lack, D., (1947) Darwin's finches, , Cambridge Univ. Press, Cambridge, UK; Lailvaux, S.P., Herrel, A., VanHooydonck, B., Meyers, J.J., Irschick, D.J., Performance capacity, fighting tactics, and the evolution of life-stage male morphs in the green anole lizard (Anolis carolinensis) (2004) Proc. R. Soc. Lond. B, 271, pp. 2501-2508; Leigh, E.G., Hladik, A., Hladik, C.M., Jolly, A., The biogeography of large islands, or how does the size of the ecological theater affect the evolutionary play? (2007) Rev. Écol. (Terre Vie), 62, pp. 105-168; Lister, B.C., The nature of niche expansion in West Indian Anolis lizards II: evolutionary components (1976) Evolution, 30, pp. 677-692; Losos, J.B., Ecomorphology, performance capability, and scaling of West Indian Anolis lizards: an evolutionary analysis (1990) Ecol. Monogr., 60, pp. 369-388; Losos, J.B., A critical comparison of the taxon-cycle and character-displacement models for size evolution of Anolis lizards in the Lesser Antilles (1992) Copeia, 1992, pp. 279-288; Losos, J.B., (2009) Lizards in an evolutionary tree: ecology and adaptive radiation of anoles, , Univ. of California Press, Berkeley, CA; Losos, J.B., Ricklefs, R.E., Adaptation and diversification on islands (2009) Nature, 457, pp. 830-836; Losos, J.B., Jackman, T.R., Larson, A., de Queiroz, K., Rodríguez Schettino, L., Historical contingency and determinism in replicated adaptive radiations of island lizards (1998) Science, 279, pp. 2115-2118; Losos, J.B., Glor, R.E., Kolbe, J.J., Nicholson, K., Adaptation, speciation, and convergence: a hierarchical analysis of adaptive radiation in Caribbean Anolis lizards (2006) Ann. Mo. Bot. Gard., 93, pp. 24-33; Lovette, I.J., Bermingham, E., Explosive speciation in the New World Dendroica warblers (1999) Proc. R. Soc. Lond. B, 266, pp. 1629-1636; MacArthur, R.H., Population ecology of some warblers of northeastern coniferous forests (1958) Ecology, 39, pp. 599-619; McPeek, M.A., The ecological dynamics of clade diversification and community assembly (2008) Am. Nat., 172, pp. E270-E284; Mooers, A.T., Heard, S.B., Inferring evolutionary process from phylogenetic tree shape (1997) Q. Rev. Biol., 72, pp. 31-54; Nee, S., Mooers, A.T., Harvey, P.H., Tempo and mode of evolution revealed from molecular phylogenies (1992) Proc. Natl. Acad. Sci. USA, 89, pp. 8322-8326; Nicholson, K.E., Glor, R.E., Kolbe, J.J., Larson, A., Hedges, S.B., Losos, J.B., Mainland colonization by island lizards (2005) J. Biogeogr., 32, pp. 929-938; Pacala, S., Roughgarden, J., Resource partitioning and interspecific competition in two two-species insular Anolis lizards communities (1982) Science, 217, pp. 444-446; Pagel, M., Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters (1994) Proc. R. Soc. Lond. B, 255, pp. 37-45; Paradis, E., (2006) Analysis of phylogenetics and evolution with R, , Springer, New York; Peters, R.H., (1983) The ecological implications of body size, , Cambridge Univ. Press, Cambridge, UK; Peters, S.E., Geologic constraints on the macroevolutionary history of marine animals (2005) Proc. Natl. Acad. Sci. USA, 102, pp. 12326-12331; Phillimore, A.B., Price, T.D., Density-dependent cladogenesis in birds (2008) PLoS Biol., 6, pp. e71; Phillimore, A.B., Price, T.D., Ecological influences on the temporal pattern of speciation (2009) Speciation and patterns of diversity, pp. 240-256. , Butlin R, Bridle J, Schluter D. in, eds, Cambridge Univ. Press, Cambridge, UK; Pinto, G., Mahler, D.L., Harmon, L.J., Losos, J.B., Testing the island effect in adaptive radiation: rates and patterns of morphological diversification in Caribbean and mainland Anolis lizards (2008) Proc. R. Soc. Lond. B, 275, pp. 2749-2757; (2009) R: a language and environment for statistical computing, , R Development Core Team, R Foundation for Statistical Computing, ISBN 3-900051-07-0; Rabosky, D.L., Heritability of extinction rates links diversification patterns in molecular phylogenies and fossils (2009) Syst. Biol., 58, pp. 629-640; Rabosky, D.L., Lovette, I.J., Density-dependent diversification in North American wood warblers (2008) Proc. R. Soc. Lond. B, 275, pp. 2363-2371; Raup, D.M., Mathematical models of cladogenesis (1985) Paleobiology, 11, pp. 42-52; Rensch, B., (1959) Evolution above the species level, , Columbia Univ. Press, New York; Revell, L.J., On the analysis of evolutionary change along single branches in a phylogeny (2008) Am. Nat., 172, pp. 140-147; Revell, L.J., Size-correction and principal components for interspecific comparative studies (2009) Evolution, 63, pp. 3258-3268; Revell, L.J., Harmon, L.J., Langerhans, R.B., Kolbe, J.J., A phylogenetic approach to determining the importance of constraint on phenotypic evolution in the neotropical lizard, Anolis cristatellus (2007) Evol. Ecol. Res., 9, pp. 261-282; Ricklefs, R.E., Travis, J., A morphological approach to the study of avian community organization (1980) Auk, 97, pp. 321-338; Rohlf, F.J., Comparative methods for the analysis of continuous variables: geometric interpretations (2001) Evolution, 55, pp. 2143-2160; Roughgarden, J., (1995) Anolis lizards of the Caribbean: ecology, evolution, and plate tectonics, , Oxford Univ. Press, Oxford, UK; Roughgarden, J.D., Pacala, S., Taxon cycle among Anolis lizard populations: review of evidence (1989) Speciation and its consequences, pp. 403-432. , Otte D, Endler J. in, eds, Academy of Natural Science, Philadelphia, PA; Roy, K., Foote, M., Morphological approaches to measuring biodiversity (1997) Trends Ecol. Evol., 12, pp. 277-281; Rundell, R.J., Price, T.D., Adaptive radiation, nonadaptive radiation, ecological speciation and nonecological speciation (2009) Trends Ecol. Evol., 24, pp. 394-399; Saunders, W.B., Swan, A.R.H., Morphology and morphologic diversity of mid-Carboniferous (Namurian) ammonoids in time and space (1984) Paleobiology, 10, pp. 195-228; Schluter, D., (2000) The ecology of adaptive radiation, , Oxford Univ. Press, Oxford, UK; Schoener, T.W., The Anolis lizards of Bimini: resource partitioning in a complex fauna (1968) Ecology, 49, pp. 704-726; Schoener, T.W., Size patterns in West Indian Anolis lizards: I. size and species diversity (1969) Syst. Zool., 18, pp. 386-401; Schoener, T.W., Size patterns in West Indian Anolis lizards: II. Correlations with the size of particular sympatric species - displacement and convergence (1970) Am. Nat., 104, pp. 155-174; Schoener, T.W., Presence and absence of habitat shift in some widespread lizard species (1975) Ecol. Monogr., 45, pp. 233-258; Sepkoski, J.J., A kinetic model of Phanerozoic taxonomic diversity I. Analysis of marine orders (1978) Paleobiology, 4, pp. 223-251; Sepkoski, J.J., A compendium of fossil marine families (1982) Milw. Public Mus. Contrib. Biol. Geol., 51, pp. 1-125; Sepkoski, J.J., A compendium of fossil marine animal genera (2002) Bull. Am. Paleontol., 363, pp. 1-560; Simpson, G.G., The major features of evolution (1953), Columbia Univ. Press, New York; Stanley, S.M., (1979) Macroevolution, , W. H. Freeman, San Francisco; Valentine, J.W., (2004) On the origin of phyla, , Univ. of Chicago Press, Chicago; Wagner, P.J., Testing evolutionary constraint hypotheses with early Paleozoic gastropods (1995) Paleobiology, 21, pp. 248-272; Walker, T.D., Valentine, J.W., Equilibrium models of evolutionary species diversity and the number of empty niches (1984) Am. Nat., 124, pp. 887-899; Ward, P.D., Comparative shell shape distributions in Jurassic-Cretaceous ammonites and Jurassic-Tertiary nautilids (1980) Paleobiology, 6, pp. 32-43; Weir, J.T., Divergent patterns of species accumulation in lowland and highland neotropical birds (2006) Evolution, 60, pp. 842-855; Williams, E.E., Ecomorphs, faunas, island size, and diverse end points in island radiations of Anolis (1983) Lizard ecology: studies of a model organism, pp. 326-370. , Huey R B, Pianka E R, Schoener T W. in, eds, Harvard Univ. Press, Cambridge, MA; Yoder, J.B., Clancey, E., Des Roches, S., Eastman, J.M., Gentry, L., Godsoe, W.K.W., Hagey, T., et al, Ecological opportunity and the origin of adaptive radiations (2010) J. Evol. Biol.
PY - 2010/9
Y1 - 2010/9
N2 - The pace of phenotypic diversification during adaptive radiation should decrease as ecological opportunity declines. We test this prediction using phylogenetic comparative analyses of a wide range of morphological traits in Greater Antillean Anolis lizards. We find that the rate of diversification along two important axes of Anolis radiation-body size and limb dimensions-decreased as opportunity declined, with opportunity quantified either as time elapsed in the radiation or as the diversity of competing anole lineages inferred to have been present on an island at different times in the past. Most previous studies of the ecological opportunity hypothesis have focused on the rate of species diversification; our results provide a complementary perspective, indicating that the rate of phenotypic diversification declines with decreasing opportunity in an adaptive radiation. © 2010 The Author(s). Journal compilation © 2010 The Society for the Study of Evolution.
AB - The pace of phenotypic diversification during adaptive radiation should decrease as ecological opportunity declines. We test this prediction using phylogenetic comparative analyses of a wide range of morphological traits in Greater Antillean Anolis lizards. We find that the rate of diversification along two important axes of Anolis radiation-body size and limb dimensions-decreased as opportunity declined, with opportunity quantified either as time elapsed in the radiation or as the diversity of competing anole lineages inferred to have been present on an island at different times in the past. Most previous studies of the ecological opportunity hypothesis have focused on the rate of species diversification; our results provide a complementary perspective, indicating that the rate of phenotypic diversification declines with decreasing opportunity in an adaptive radiation. © 2010 The Author(s). Journal compilation © 2010 The Society for the Study of Evolution.
U2 - 10.1111/j.1558-5646.2010.01026.x
DO - 10.1111/j.1558-5646.2010.01026.x
M3 - Research Article
SN - 0014-3820
VL - 64
SP - 2731
EP - 2745
JO - Evolution
JF - Evolution
IS - 9
ER -