TY - JOUR
T1 - Cumulative Stressors Trigger Increased Vulnerability of Diatom Communities to Additional Disturbances
AU - Morin, Soizic
AU - Bonet, Berta
AU - Corcoll, Natàlia
AU - Guasch, Helena
AU - Bottin, Marius
AU - Coste, Michel
N1 - Publisher Copyright:
© 2015, Springer Science+Business Media New York.
Copyright:
Copyright 2015 Elsevier B.V., All rights reserved.
PY - 2015/10/1
Y1 - 2015/10/1
N2 - Chronic, non-lethal stressors occurring gradually (in space or time) can result in cumulative impacts that are more dramatic than higher intensities or occasional critical levels of any single one of these stressors. The negative effects of the chronic stressors trigger lasting impacts that may grow in intensity and become problematic over time and/or to higher trophic levels. In rivers, aquatic organisms experience this type of cumulative stress along the up- to downstream gradient in natural and anthropogenic contaminants generally observed in inhabited watersheds. Diatoms are a major component of the periphyton in rivers; their richness and diversity in natural communities are directly related to their varied ecological preferences and sensitivity to disturbance. In this study, we monitored from 2003 to 2008 the changes in the diversity of taxonomic and non-taxonomic features along a small river (Riou-Mort, South West France), at three sites: one site upstream considered as a reference for this watershed, one intermediate site with high nutrient load, and one downstream site exposed to both nutrient and metal pollution. The cumulative impacts of nutrients plus metals led to a gradual decrease in species richness and diversity, and in a potential capacity to cope with additional stresses, e.g., climate change-related ones. This is reflected by a decrease in species richness downstream, more dramatic in the hot summer of 2003 than in cooler summers. With the increasingly protective environmental regulations (e.g., Water Framework Directive in Europe), accumulation of stresses on aquatic resources are recommended to receive increasing attention, in particular considering the expected changes in climate.
AB - Chronic, non-lethal stressors occurring gradually (in space or time) can result in cumulative impacts that are more dramatic than higher intensities or occasional critical levels of any single one of these stressors. The negative effects of the chronic stressors trigger lasting impacts that may grow in intensity and become problematic over time and/or to higher trophic levels. In rivers, aquatic organisms experience this type of cumulative stress along the up- to downstream gradient in natural and anthropogenic contaminants generally observed in inhabited watersheds. Diatoms are a major component of the periphyton in rivers; their richness and diversity in natural communities are directly related to their varied ecological preferences and sensitivity to disturbance. In this study, we monitored from 2003 to 2008 the changes in the diversity of taxonomic and non-taxonomic features along a small river (Riou-Mort, South West France), at three sites: one site upstream considered as a reference for this watershed, one intermediate site with high nutrient load, and one downstream site exposed to both nutrient and metal pollution. The cumulative impacts of nutrients plus metals led to a gradual decrease in species richness and diversity, and in a potential capacity to cope with additional stresses, e.g., climate change-related ones. This is reflected by a decrease in species richness downstream, more dramatic in the hot summer of 2003 than in cooler summers. With the increasingly protective environmental regulations (e.g., Water Framework Directive in Europe), accumulation of stresses on aquatic resources are recommended to receive increasing attention, in particular considering the expected changes in climate.
UR - http://www.scopus.com/inward/record.url?scp=84942552700&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84942552700&partnerID=8YFLogxK
U2 - 10.1007/s00248-015-0602-y
DO - 10.1007/s00248-015-0602-y
M3 - Research Article
C2 - 25896427
AN - SCOPUS:84942552700
SN - 0095-3628
VL - 70
SP - 585
EP - 595
JO - Microbial Ecology
JF - Microbial Ecology
IS - 3
ER -