TY - JOUR
T1 - Biological corridors as important habitat structures for maintaining bees in a tropical fragmented landscape
AU - Gutiérrez-Chacón, Catalina
AU - Valderrama-A, Carlos
AU - Klein, Alexandra Maria
N1 - Funding Information:
Corresponding author Catalina Gutiérrez-Chacón received financial support from the Colombian Administrative Department of Science, Technology and Innovation (COLCIENCIAS), through a doctorate scholarship (No. 049). Field work for this study was supported by the Colombian Biodiversity Research Institute Alexander von Humboldt, Universidad Icesi and Wildlife Conservation Society (WCS)—Colombia Program. Acknowledgements
Funding Information:
We thank J.C. Mejía, M.B. Duque, F. Builes, J. Builes, H.F. Gómez, H. Castro, S. Giraldo, and landowners in Filandia for research permission and valuable help with fieldwork. We further thank our field assistants, M. Rodriguez, J. Home, L.F. Estrada and F. Gamboa, V.H González and R. Ospina for their help with bee identification, and C. Ríos for GIS help. We would like to thank CRQ (Corporación Autónoma Regional del Quindío) for the research permit No. 576-2014 and Universidad del Valle for research facilities; C.G.C was funded by COLCIENCIAS (Colombian Administrative Department of Science, Technology and Innovation). This study was also supported by the University of Freiburg, Universidad Icesi, the Colombian Biodiversity Research Institute Alexander von Humboldt and Wildlife Conservation Society (WCS).
Publisher Copyright:
© 2019, Springer Nature Switzerland AG.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/2/1
Y1 - 2020/2/1
N2 - Biological corridors are an important conservation strategy to increase connectivity between populations—mainly vertebrates—in fragmented landscapes, which often require habitat restoration to achieve physical connections. Non-target groups such as bees could benefit from corridors while contributing to the restoration process given their role as pollinators, but little is known about the use of corridors by bees. Here we assessed the habitat value for bees of four biological corridors in the Colombian Andes by comparing bee species richness, community composition and functional diversity between corridors (which had two land-cover sections: riparian forest and restored forest), forest patches being connected by corridors and surrounding pastures. We found a higher species richness in riparian than in restored sections of corridors, which was comparable to that in forest and higher than in pasture. Community composition in forest and riparian sections were similar and differed from that in pasture. In contrast, functional diversity was similar among all land-use types, suggesting a higher species redundancy in forest and riparian corridors, given the higher species richness, compared to pastures. Our results show that riparian corridors are holding forest-associated species that could not survive in pastures, and given the higher redundancy, can significantly contribute to the maintenance of pollination services in fragmented landscapes. Our results also indicate that 13 years of restoration process have not been sufficient to reach reference levels (i.e. forest/riparian) in terms of bee species richness, but the recovery of some forest-associated species points to the potential of biological corridors to functionally connect forest patches.
AB - Biological corridors are an important conservation strategy to increase connectivity between populations—mainly vertebrates—in fragmented landscapes, which often require habitat restoration to achieve physical connections. Non-target groups such as bees could benefit from corridors while contributing to the restoration process given their role as pollinators, but little is known about the use of corridors by bees. Here we assessed the habitat value for bees of four biological corridors in the Colombian Andes by comparing bee species richness, community composition and functional diversity between corridors (which had two land-cover sections: riparian forest and restored forest), forest patches being connected by corridors and surrounding pastures. We found a higher species richness in riparian than in restored sections of corridors, which was comparable to that in forest and higher than in pasture. Community composition in forest and riparian sections were similar and differed from that in pasture. In contrast, functional diversity was similar among all land-use types, suggesting a higher species redundancy in forest and riparian corridors, given the higher species richness, compared to pastures. Our results show that riparian corridors are holding forest-associated species that could not survive in pastures, and given the higher redundancy, can significantly contribute to the maintenance of pollination services in fragmented landscapes. Our results also indicate that 13 years of restoration process have not been sufficient to reach reference levels (i.e. forest/riparian) in terms of bee species richness, but the recovery of some forest-associated species points to the potential of biological corridors to functionally connect forest patches.
UR - http://www.scopus.com/inward/record.url?scp=85076592666&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85076592666&partnerID=8YFLogxK
U2 - 10.1007/s10841-019-00205-2
DO - 10.1007/s10841-019-00205-2
M3 - Research Article
AN - SCOPUS:85076592666
SN - 1366-638X
VL - 24
SP - 187
EP - 197
JO - Journal of Insect Conservation
JF - Journal of Insect Conservation
IS - 1
ER -