A distinguisher for high rate McEliece cryptosystems

Jean Charles Faugère, Valérie Gauthier-Umaña, Ayoub Otmani, Ludovic Perret, Jean Pierre Tillich

Research output: Chapter in Book/Report/Conference proceedingConference contribution

36 Scopus citations

Abstract

The Goppa Code Distinguishing (GCD) problem consists in distinguishing the matrix of a Goppa code from a random matrix. Up to now, it is widely believed that the GCD problem is a hard decisional problem. We present the first technique allowing to distinguish alternant and Goppa codes over any field. Our technique can solve the GCD problem in polynomial-time provided that the codes have rates sufficiently large. The key ingredient is an algebraic characterization of the key-recovery problem. The idea is to consider the dimension of the solution space of a linearized system deduced from a particular polynomial system describing a key-recovery. It turns out that experimentally this dimension depends on the type of code. Explicit formulas derived from extensive experimentations for the value of the dimension are provided for generic random, alternant, and Goppa code over any alphabet. Finally, we give explanations of these formulas in the case of random codes, alternant codes over any field and binary Goppa codes.

Original languageEnglish (US)
Title of host publication2011 IEEE Information Theory Workshop, ITW 2011
Pages282-286
Number of pages5
DOIs
StatePublished - 2011
Externally publishedYes
Event2011 IEEE Information Theory Workshop, ITW 2011 - Paraty, Brazil
Duration: Oct 16 2011Oct 20 2011

Publication series

Name2011 IEEE Information Theory Workshop, ITW 2011

Conference

Conference2011 IEEE Information Theory Workshop, ITW 2011
CountryBrazil
CityParaty
Period10/16/1110/20/11

All Science Journal Classification (ASJC) codes

  • Information Systems

Fingerprint Dive into the research topics of 'A distinguisher for high rate McEliece cryptosystems'. Together they form a unique fingerprint.

Cite this