Project Details
Description
Cardiac remodeling is a phenomenon that culminates in prevalent pathologies such as arterial hypertension, coronary artery disease and type 2 diabetes mellitus. Since these are the main causes of morbidity and mortality worldwide, it is necessary to approach the multidimensional and multisystemic interactions underlying these phenomena.
Methodology: two-phase study involving adult patients aged 40 to 80 years with prevalent cardiovascular pathologies and healthy patients in the same age range. For the retrospective phase, data will be extracted from the clinical history, echocardiogram report and 24-hour electrocardiographic raw signals. With these data, the circadianity of heart rate variability parameters will be analyzed using the Cosinor technique. Then, using these circadian data, a predictive model will be designed, using automatic learning techniques for pattern recognition in the rhythmicity and prediction of patients with cardiac remodeling. Finally, in the prospective phase, the most severe cases of remodeling and desynchronization of electrocardiographic parameters will be selected to comparatively characterize the immunological profile of these groups.
We present three research hypotheses:
1.Pathological cardiac remodeling generates phase desynchronization of the cardiac clock.
2.Through machine learning techniques it is possible to evaluate the circadian rhythmicity of electrocardiographic parameters and to identify with adequate precision the patients who present cardiac remodeling.
3. Pathological cardiac remodeling and phase desynchronization of the cardiac clock are associated with a proinflammatory state of their own.
The expected results will contribute to the understanding of cardiac remodeling as a phenomenon of basic and clinical interest. Patients with cardiac remodeling present structural alterations that modify the functioning of the cardiac clock, which is evidenced by desynchronization during the circadian cycle of several parameters of the electrical activity. This is a phenomenon that underlies maladaptive inflammatory mechanisms that are expressed with characteristic electrical, circadian and immunological activity.
Methodology: two-phase study involving adult patients aged 40 to 80 years with prevalent cardiovascular pathologies and healthy patients in the same age range. For the retrospective phase, data will be extracted from the clinical history, echocardiogram report and 24-hour electrocardiographic raw signals. With these data, the circadianity of heart rate variability parameters will be analyzed using the Cosinor technique. Then, using these circadian data, a predictive model will be designed, using automatic learning techniques for pattern recognition in the rhythmicity and prediction of patients with cardiac remodeling. Finally, in the prospective phase, the most severe cases of remodeling and desynchronization of electrocardiographic parameters will be selected to comparatively characterize the immunological profile of these groups.
We present three research hypotheses:
1.Pathological cardiac remodeling generates phase desynchronization of the cardiac clock.
2.Through machine learning techniques it is possible to evaluate the circadian rhythmicity of electrocardiographic parameters and to identify with adequate precision the patients who present cardiac remodeling.
3. Pathological cardiac remodeling and phase desynchronization of the cardiac clock are associated with a proinflammatory state of their own.
The expected results will contribute to the understanding of cardiac remodeling as a phenomenon of basic and clinical interest. Patients with cardiac remodeling present structural alterations that modify the functioning of the cardiac clock, which is evidenced by desynchronization during the circadian cycle of several parameters of the electrical activity. This is a phenomenon that underlies maladaptive inflammatory mechanisms that are expressed with characteristic electrical, circadian and immunological activity.
Keywords
Heart remodeling, heart diseases, sleep-wake cycle, heart rate determination, autonomic nervous system, machine learning, immune system.
Commitments / Obligations
General: Evaluar el efecto del remodelamiento cardíaco patológico sobre la circadianeidad de parámetros electrocardiográficos en pacientes con enfermedades cardiovasculares prevalentes.
Específicos:1. Comparar el comportamiento circadiano de los parámetros electrocardiográficos en personas con y sin remodelamiento cardíaco.
2. Determinar mediante técnicas de aprendizaje automático si los parámetros electrocardiográficos siguen ritmicidad circadiana.
3. Asociar los parámetros electrocardiográficos de circadianeidad y el perfil inmunológico de pacientes con remodelamiento cardíaco.
Resultados esperados:
Los resultados de la investigación parten del análisis de circadianeidad a través de estadística clásica y Cosinor de los parámetros electrocardiográficos de los pacientes con patologías cardiovasculares clasificados de acuerdo a la presencia o no de remodelamiento cardíaco. Describiendo las variables de agrupamiento que podrían tener injerencia en este fenómeno como lo son sexo, edad, medicamentos en uso, tiempo de evolución y severidad de la enfermedad. Posteriormente, se presenta el modelamiento a través de técnicas de aprendizaje de máquinas y redes neuronales con aprendizaje supervisado para el agrupamiento de los participantes en función del comportamiento circadiano y las patologías cardiovasculares. Finalizamos con la descripción del perfil inmunológico con la pretensión de correlacionar aquellos metabolitos que están expresados en pacientes con remodelamiento y aquellos que están correlacionados con la desincronización de fase de dichos pacientes.
Específicos:1. Comparar el comportamiento circadiano de los parámetros electrocardiográficos en personas con y sin remodelamiento cardíaco.
2. Determinar mediante técnicas de aprendizaje automático si los parámetros electrocardiográficos siguen ritmicidad circadiana.
3. Asociar los parámetros electrocardiográficos de circadianeidad y el perfil inmunológico de pacientes con remodelamiento cardíaco.
Resultados esperados:
Los resultados de la investigación parten del análisis de circadianeidad a través de estadística clásica y Cosinor de los parámetros electrocardiográficos de los pacientes con patologías cardiovasculares clasificados de acuerdo a la presencia o no de remodelamiento cardíaco. Describiendo las variables de agrupamiento que podrían tener injerencia en este fenómeno como lo son sexo, edad, medicamentos en uso, tiempo de evolución y severidad de la enfermedad. Posteriormente, se presenta el modelamiento a través de técnicas de aprendizaje de máquinas y redes neuronales con aprendizaje supervisado para el agrupamiento de los participantes en función del comportamiento circadiano y las patologías cardiovasculares. Finalizamos con la descripción del perfil inmunológico con la pretensión de correlacionar aquellos metabolitos que están expresados en pacientes con remodelamiento y aquellos que están correlacionados con la desincronización de fase de dichos pacientes.
| Status | Active |
|---|---|
| Effective start/end date | 12/4/24 → 6/30/26 |
UN Sustainable Development Goals
In 2015, UN member states agreed to 17 global Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all. This project contributes towards the following SDG(s):
Main Funding Source
- National
Location
- Bogotá D.C.
Fingerprint
Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.